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Meta‑analysis of gene expression 
disease signatures in colonic biopsy 
tissue from patients with ulcerative 
colitis
Bryan Linggi1, Vipul Jairath1,2,3, Guangyong Zou1,3, Lisa M. Shackelton1, 
Dermot P. B. McGovern4, Azucena Salas5, Bram Verstockt6,7, Mark S. Silverberg8, 
Shadi Nayeri9, Brian G. Feagan1,2,3 & Niels Vande Casteele  1,10*

Publicly available ulcerative colitis (UC) gene expression datasets from observational studies and 
clinical trials include inherently heterogeneous disease characteristics and methodology. We used 
meta-analysis to identify a robust UC gene signature from inflamed biopsies. Eight gene expression 
datasets derived from biopsy tissue samples from noninflammatory bowel disease (IBD) controls and 
areas of active inflammation from patients with UC were publicly available. Expression- and meta-
data were downloaded with GEOquery. Differentially expressed genes (DEG) in individual datasets 
were defined as those with fold change > 1.5 and a Benjamini–Hochberg adjusted P value < .05. 
Meta-analysis of all DEG used a random effects model. Reactome pathway enrichment analysis 
was conducted. Meta-analysis identified 946 up- and 543 down-regulated genes in patients with 
UC compared to non-IBD controls (1.2 and 1.7 times fewer up- and down-regulated genes than the 
median of the individual datasets). Top-ranked up- and down-regulated DEG were LCN2 and AQP8. 
Multiple immune-related pathways (e.g., ‘Chemokine receptors bind chemokine’ and ‘Interleukin-10 
signaling’) were significantly up-regulated in UC, while ‘Biological oxidations’ and ‘Fatty acid 
metabolism’ were downregulated. A web-based data-mining tool with the meta-analysis results was 
made available (https://​preme​dibd.​com/​genes.​html). A UC inflamed biopsy disease gene signature 
was derived. This signature may be an unbiased reference for comparison and improve the efficiency 
of UC biomarker studies by increasing confidence for identification of disease-related genes and 
pathways.

Abbreviations
CD	� Crohn’s disease
DEG	� Differentially expressed genes
ECM	� Extracellular matrix
FC	� Fold change
FFPE	� Formalin-fixed and paraffin-embedded
GEO	� Gene Expression Omnibus
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IBD	� Inflammatory bowel disease
IL	� Interleukin
MCS	� Mayo Clinic Score
PCA	� Principal component analysis
PC1	� First principal component
PC2	� Second principal component
TCA​	� Tricarboxylic acid
TNF	� Tumor necrosis factor
UC	� Ulcerative colitis

Ulcerative colitis (UC) is a chronic relapsing–remitting disease of the large intestine that is associated with both 
genetic and environmental risk factors. Ulcerative colitis is characterized by inflammation of the mucosa and 
submucosa, a loss of epithelial barrier integrity, and dysregulated immune responses. Medical management of 
patients with moderately to severely active UC includes therapies targeting key aspects of the inflammatory cas-
cade, such as pro-inflammatory cytokines (tumor necrosis factor [TNF] antagonists and interleukin [IL]-12/23 
antibodies), signaling proteins (e.g., Janus kinase family inhibitors), or immune cell trafficking (vedolizumab)1. 
Despite the range of available therapies, many UC patients experience primary non-response or secondary loss 
of response to treatment and must cycle through several therapies to achieve remission; this process is currently 
based upon trial and error. Thus, more accurate identification of disease subtypes that would benefit from targeted 
treatment with specific therapies is an area of active investigation and a large unmet need.

The clinical and therapeutic value of molecular (DNA, RNA, protein) subtyping of disease has been most 
notable in oncology2. Global transcriptome (RNA) analysis has been a particularly powerful and unbiased tool 
to aid in understanding of disease etiology, pathology, diagnosis, and subtypes, as well as for the identification of 
predictive markers of drug efficacy, molecular surrogates of disease activity, and/or pharmacodynamic markers3. 
Despite this abundant potential, the application of transcriptomics to clinical trial data has been frequently 
limited by small sample size, especially when subgroups of interest are considered (e.g., treatment responders 
versus non-responders). The high dimension-low sample size nature of the analysis4, in which the number of 
genes of interest far exceeds the number of available samples, is particularly problematic.

In UC, transcriptomics analysis of preclinical and clinical samples is frequently employed to aid in the under-
standing of disease pathogenesis, to discover new therapeutic targets, and to identify biomarkers5. The most 
appropriate samples available for these analyses are mucosal biopsies taken during sigmoidoscopy or colonoscopy, 
which are typically procured for histopathologic analysis of disease activity6, but also serve as source material for 
molecular analyses. Several aspects of tissue acquisition and processing may influence the results of transcriptom-
ics analysis, including biopsy location within the colon and relationship to endoscopically visible active disease7.

Several publicly available transcriptomics datasets exist from patients with UC and healthy controls. Meta-
analysis of data from multiple studies has been undertaken using various methodologies to explore the similari-
ties between Crohn’s disease (CD) and UC8,9, to define disease signatures in peripheral blood mononuclear cells 
from patients with UC10, and to identify disease signatures associated with UC pathogenesis11.

We conducted random effects meta-analysis of publicly available UC microarray datasets derived from 
inflamed tissue biopsies to identify an overall list of UC disease signature genes, with a goal to improve the 
confidence for identification of disease-related genes from UC transcriptomic studies, and to explore aspects of 
study design that may lead to differences in gene expression.

Methods
A search of the National Center for Biotechnology Information Gene Expression Omnibus (GEO)12 for micro-
array datasets using the terms [((ulcerative colitis) AND "Homo sapiens"[porgn] AND "gse"[Filter]) AND 
(("expression profiling by array"[DataSet Type]) AND "gse"[Filter]) AND ("gse"[Filter])] retrieved 85 datasets. 
Datasets were excluded for the following reasons: they did not contain both UC patients and non-inflammatory 
bowel disease (IBD) controls, they included only pediatric patients, there were fewer than 10 combined UC 
patients and non-IBD controls, samples were only taken from uninflamed mucosa or were included in other 
datasets, data was not expressed in intensity values or was z-score transformed, or samples were not processed 
at the same time. In 1 instance the original investigators were consulted to assess eligibility for inclusion of other 
datasets potentially containing samples in common with dataset GSE73611. These datasets were determined to 
contain the same samples and were therefore excluded. Eight datasets remained after exclusions (Supplementary 
Fig. S1). The subset of samples isolated from inflamed tissue of patients with active UC was selected from each 
dataset for this study. Additional methods are described in the Supplementary Methods.

Results
Datasets.  A total of 8 microarray datasets deposited in the NCBI GEO database between 2009 and 2018 that 
were derived from intestinal tissue RNA from various cohorts and that included at least 10 patients with UC and 
non-IBD controls combined (see additional inclusion criteria in Supplementary Fig. S1), and which originated 
from a range of institutions and microarray platforms (Table 1) were identified, for a total of 251 samples from 
patients with UC and 94 samples from non-IBD controls.

Datasets originated from the pharmaceutical industry (n = 1), academic hospitals or other European institu-
tions (n = 5), and academic hospitals in the United States (n = 2). Two datasets included samples from clinical 
trials. Four datasets were run using the Affymetrix Human Genome U133 Plus 2.0 Array, 2 using Illumina 
HumanHT-12 WG-DASL V4.0 R2 expression beadchip, and 1 each using Affymetrix Human Gene 1.0 ST Array, 
and Affymetrix HT HG-U133 + PM Array.
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The number of patients with UC and non-IBD controls in each dataset ranged from 8 to 87 (median 15) and 
5 to 21 (median 12), respectively. Six datasets had more UC patients than non-IBD controls, including 4 with 
greater than two-times the number of UC patients than non-IBD controls.

The UC disease characteristics reported for the 8 datasets varied widely among the publications associated 
with the original study populations13–20. Seven of the 8 associated publications reported disease duration; 1 on 
the patient level, with the remaining 6 reporting summary statistics (median, mean, with interquartile range 
or standard deviation) or binary categorical (less than or greater than 10 years) data. Measurements used to 
define or describe endoscopic and/or histological disease activity for the original study populations included 
the total Mayo Clinic Score (MCS) or the endoscopic subscore of the MCS (n = 7), the Matt’s score (n = 2), and 
the Geboes score (n = 1). Measures of endoscopic or histological disease activity were not reported in 3 of the 
associated publications. C-reactive protein concentration was reported in 2, disease extent in 7, and concomitant 
medications in all publications.

Biopsy location and method for sample handling also varied considerably among the datasets. Biopsy samples 
from patients with UC were reported as originating from the descending colon in 3 datasets, the sigmoid colon 
or rectum in 2 datasets, the rectum in 1 dataset, the edge of an ulcer or the most inflamed colonic segment in 1 
dataset, and 15 to 20 cm from the anal verge from locations representative of the degree of inflammation seen 
in the region in 1 dataset. Biopsy samples were reported as preserved in RNAlater in 5 datasets, or snap frozen 
in liquid nitrogen, formalin-fixed and paraffin-embedded (FFPE), or the preservation method was not reported 
in 1 dataset each.

Differentially expressed genes in individual datasets.  Differentially expressed genes (DEG) in biop-
sies taken in areas of active inflammation from patients with UC and non-IBD controls were identified in each of 
the 8 datasets using identical methodology to allow direct comparison. The analysis was not adjusted for covari-
ates such as age or sex since patient level data was not available for most datasets. In general, patients whose 
samples were included had undergone colonoscopy for UC disease surveillance, at screening for a clinical trial, 

Table 1.   Microarray data series used for meta-analysis. FFPE formalin-fixed and paraffin-embedded, GEO 
Gene Expression Omnibus, PMID PubMed unique identifier, IBD inflammatory bowel disease, MCS Mayo 
Clinic Score, MES Mayo Endoscopic Score, NR not reported, UC, ulcerative colitis. Data series meeting the 
inclusion criteria were identified and downloaded from Gene Expression Omnibus (GEO). Disease and study 
characteristics summarized in the table were extracted from publications (see PMID) that included samples 
used in the current study. In some cases, the samples used in the current study represented a subset of those 
utilized and/or described in the publications.

GEO series 
accession 
number

Sample 
source

PMID 
(publication 
year)

UC 
sample 
(N)

Non-IBD 
control 
samples 
(N)

Biopsy 
location

Sample 
storage 
method Array platform

Disease 
duration

Disease 
activity 
measure

C reactive 
protein 
reported

Disease 
extent 
reported

Concomitant 
medications 
reported

13367 Yale Uni-
versity

19834973 
(2010) 8 10 Descending 

colon RNAlater
Affymetrix 
human genome 
U133 plus 2.0 
array

Years 
(> or < 10) MCS NR NR Yes

9452
University 
of Copen-
hagen

19177426 
(2009) 8 5 Descending 

colon RNAlater
Affymetrix 
human genome 
U133 plus 2.0 
array

Years of 
symptoms 
(patient 
level)

NR NR NR Yes

53306
Johns 
Hopkins 
University

26034135 
(2015) 12 12

Sigmoid 
colon or 
rectum

FFPE

Illumina 
humanHT-12 
WG-DASL V4.0 
R2 expression 
beadchip

Mean years MCS and 
Matts NR Yes Yes

38713 IDIBAPS 23135761 
(2013) 15 13

Sigmoid 
colon or 
rectum

RNAlater
Affymetrix 
human genome 
U133 plus 2.0 
array

Mean years MCS and 
Matts NR Yes Yes

47908 Herlev 
Hospital

25358065 
(2014) 39 15 Descending 

colon RNAlater
Affymetrix 
human genome 
U133 Plus 2.0 
Array

Years 
(> or < 10) MCS, MES NR Yes Yes

73661 KU Leuven 27802155 
(2017) 67 12

Edge of 
ulcer 
or most 
inflamed 
colonic 
segment

Snap 
frozen

Affymetrix 
human gene 1.0 
ST array

Median 
years

MCS, 
MES, 
Geboes

NR Yes Yes

114527 CIC bio-
GUNE

30329026 
(2018) 15 6 Rectum NR

Illumina 
humanHT-12 
WG-DASL V4.0 
R2 expression 
beadchip

NR MES Yes Yes Yes

87466 Janssen 
R&D

29401083 
(2018) 87 21

15–20 cm 
from anal 
verge

RNAlater
Affymetrix HT 
HG-U133 + PM 
Array

Median 
years MCS Yes Yes Yes
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or for suspicion of other gastrointestinal disorders. A wide range in the number of up- and down-regulated genes 
was observed. The median number of up-regulated genes was 1090 and ranged from 369 (GSE47908) to 2442 
(GSE383713), while the median number of down-regulated genes was 942 and ranged from 110 (GSE13367) to 
2098 (GSE38713) (Fig. 1). The DEG for each dataset are represented in individual volcano plots (Supplementary 
Figs. S2, S3, S4, S5, S6, S7, S8, S9).

Meta‑analysis.  Given the wide range in the number of DEG for individual datasets, we conducted a ran-
dom effects meta-analysis to identify similarities and differences in DEG across the 8 datasets. Compared to 
median values in the individual datasets, there were 1.2 times fewer up- and 1.7 fewer down-regulated DEG in 
the meta-analysis. The top 10 up- and down-regulated genes are shown in Table 2 and the complete list (meeting 
log2-fold change [FC > 0.58 [equivalent to 1.5-fold change], adjusted P value [< 0.05] criteria, and regulated in 
the same direction in 6 or more datasets) is provided in the Supplementary Dataset.

Meta-analysis of DEG identified 8402 genes up- or down-regulated in the same direction in 6 or more data-
sets (Fig. 1). Of these, 946 up- and 543 down-regulated genes met the criteria for log2-fold change (FC > 0.58 
[equivalent to 1.5-fold change]) and adjusted P value (< 0.05), 9 met the criterion for log2-FC, yet did not achieve 
significance at the adjusted P value, 5591 met the criterion for adjusted P value however not for log2-FC, and 
1313 did not meet either criterion.

To evaluate the global DEG similarities between the individual datasets and the meta-analysis, we conducted 
a principal component analysis (PCA) to reduce data dimensions based on the log2-FC values. This analysis 
revealed 48.8% of the total variance in the first principal component (PC1) and 15.4% of the remaining variation 
in the second principal component (PC2). In PCA, the meta-analysis dataset was centered approximately between 
all datasets on the PC2 axis, confirming that the meta-analysis provided an effective ‘average’ representation of 
most of the individual datasets (Supplementary Fig. S10).

To evaluate the influence of individual datasets on the results of the meta-analysis, forest plots were cre-
ated that compared the mean log2-FC and confidence intervals for the top 2 up- (LCN2 and DUOXA2, Fig. 2) 
and down- (AQP8 and CLDN8, Fig. 2) regulated DEG. The mean log2-FC for LCN2 in meta-analysis was 3.31 
(95% CI 2.21, 4.41) (Fig. 2). LCN2 was up-regulated in all 8 datasets, with a mean log2-FC ranging from 1.55 
(GSE13367) to 5.43 (GSE38713). The 95% CIs for the mean changes were greater than 0 in all datasets. The 
overall expression pattern of DUOXA2 was similar to LCN2. The mean log2-FC for DUOXA2 in meta-analysis 
was 3.31 (95% CI 2.17, 4.45) (Fig. 2). DUOXA2 was up-regulated in all 8 datasets with a mean log2-FC ranging 
from 1.61 (GSE13367) to 6.50 (GSE38713). The 95% CIs for the mean changes were greater than 0 in all datasets.

The mean log2-FC for AQP8 in meta-analysis was − 4.27 (95% CI − 5.78, − 2.76) (Fig. 2). AQP8 was down 
regulated in all 8 datasets with a mean log2-FC ranging from − 1.85 (GSE53306) to − 8.61 (GSE38713). The mean 
log2-FC for CLDN8 in meta-analysis was − 3.23 (95% CI − 4.28, − 2.18) (Fig. 2) CLDN8 was down-regulated in 
all 8 datasets, with a mean log2-FC ranging from − 1.40 (GSE53306) to − 5.47 (GSE9452).

IBD susceptibility genes.  To explore whether differential expression of any of the DEG identified in meta-
analysis may be driven by known IBD susceptibility loci, we compared these genes to those previously identi-
fied in IBD genome-wide association21, expression quantitative trait loci (eQTL)22,23, and methylation quantitative 
trait loci (mQTL)24 studies. Of the 241 IBD susceptibility genes identified by genome-wide association studies 
(GWAS), a total of 15 (6.2%) were also identified in meta-analysis (Table 3). Of 121 eQTL genes identified in 2 
studies, 16 (13%) were also identified in meta-analysis (Table 3). Four mQTL24 were identified in the literature, 
none of which were included in the meta-analysis DEG. The overlap between DEG identified in meta-analysis 
and genes identified in IBD GWAS and eQTL suggests a possible mechanism for their regulation.

Enrichment analysis.  Gene set enrichment analysis was used to evaluate functions and processes poten-
tially associated with the up- and down-regulated DEG in the individual datasets and to compare these pathways 
to those enriched in the DEG identified in meta-analysis.

Ten Reactome pathways were enriched in the analysis of up-regulated DEG (Fig. 3 and Supplementary 
Fig. S11). Among these pathways, all 6 ‘Immune-related pathways’ in the Reactome database (Fig. 3; ‘Chemokine 
receptors bind chemokines’ [e.g., CCL20 , CCR7, CXCR2], ‘Interleukin-10 signaling’ [e.g., IL1R1, PTGS2, TIMP1] 
‘Interleukin-4 and Interleukin-13 signaling’ [e.g., IL1A, IL6, MMP9], ‘Neutrophil degranulation’ [e.g., ALOX5, 
S100A8, SERPINA3], ‘Peptide ligand-binding receptors’ [e.g., ANXA1, C3, CXCL10], and ‘Signaling by inter-
leukins’ [e.g., HGF, IL33, OSM]) were enriched in the meta-analysis up-regulated DEG and in most of the indi-
vidual dataset up-regulated DEG, except for ‘Interleukin-10 signaling’ in GSE13367 and ‘Peptide ligand-binding 
receptors’ in GSE38713 and GSE114527. All 4 ‘Extracellular matrix (ECM)-related pathways’ (Supplementary 
Fig. S11,‘Collagen degradation’ [e.g., COL1A1, MMP1, MMP10], ‘Degradation of extracellular matrix’ [e.g., CD44, 
FBN1, LAMC1], ‘ECM proteoglycans’ [e.g., BGN, ITGA2, TNC], and ‘Extracellular matrix organization’ [e.g., 
ADAM9, CTSB, ICAM1]) were also enriched in the meta-analysis up-regulated DEG and in the up-regulated 
DEG for all of the individual datasets except for ‘ECM proteoglycans’ and ‘Extracellular matrix organization’ 
in GSE53306.

Eleven Reactome pathways were enriched in the analysis of down-regulated DEG (Fig. 4, and Supplementary 
Fig. S11). Large variation was observed in enrichment values within the 6 ‘Metabolism-related’ pathways amongst 
the datasets (Fig. 4). The meta-analysis down-regulated DEG were modestly enriched for ‘Biological oxidations’ 
(e.g., CYP2J2, SLC26A2, UGT1A8) and in 7 of the 8 individual dataset DEG, while ‘Fatty acid metabolism’ (e.g., 
ACOX1, CPT1A, NUDT7) was enriched in the meta-analysis DEG but only 4 of the 8 individual dataset DEG. The 
pathways ‘The citric acid (tricarboxylic acid [TCA]) cycle and respiratory electron transport’ (e.g., ACO2, COX5A, 
COX5B), ‘Citric acid cycle (TCA cycle)’ (a subset of genes in ‘The citric acid (TCA) cycle and respiratory electron 
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transport’), ‘Respiratory electron transport, ATP synthesis by chemiosmotic coupling, and heat production by 
uncoupling proteins’ (e.g., ATP5MC3, ETFA, NDUFA2), and ‘Respiratory electron transport’ (a subset of genes 
in ‘Respiratory electron transport, ATP synthesis by chemiosmotic coupling, and heat production by uncoupling 

Figure 1.   (a) Differentially expressed genes (up- or down-regulated log2-fold change [log2-FC] > 0.58 with 
adjusted P value < 0.05) for individual datasets and meta-analysis (Meta- × 8). Multiple Probesets for the same 
gene were summarized at Gene Symbol level (and counted as 1 differentially expressed gene). (b) Meta-analysis 
volcano plot of genes up- or down-regulated in ≥ 6 datasets. Dots to the left of 0 on the X-axis represent genes 
whose expression is lower in UC patients compared to healthy controls, whereas dots to right of 0 on X-axis 
represent genes whose expression is higher in patients with UC compared to healthy controls. Gray dots 
represent genes that do not meet the criteria for log2 fold change (FC) > 1.5 (up or down) or significant adjusted 
P value < 0.05. Green dots represent genes that meet the criterion for log2 FC > 1.5 (up or down) but not adjusted 
P value < 0.05. Blue dots represent genes with adjusted P value < 0.05 but not log2 FC > 1.5 (up or down). Red 
dots represent genes that meet both the log2 FC > 1.5 (up or down) and adjusted P value < 0.05 criteria. The 
horizontal dashed line is located at a value equivalent to the adjusted P value (0.05). Vertical lines are located 
at + and − 1.5 log2 FC.
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proteins’) were all enriched in the down-regulated DEG for the GSE38713, GSE73661, and GSE114527 datasets, 
but not in the meta-analysis down-regulated DEG. All 5 ‘Transport and modification-related’ pathways were 
enriched in the meta-analysis down-regulated DEG (‘Glucuronidation’ [e.g., UGDH, UGP2, UGT1A1], ‘Phase 
I – Functionalization of compounds’ [e.g., ACSS2, ADH1A, CYP2B6], ‘Phase II – Conjugation of compounds’ 
[e.g., GSTM4, NAT2, SLC26A2], ‘Response to metal ions’ [e.g., MTE1, MT1F, MT1G], and ‘SLC-mediated trans-
membrane transport’ [e.g., SLC1A1, SLC3A1, SLC4A4]) and in the down-regulated DEG for GSE73661 and 
GSE87466 (Supplementary Fig. S11).

Discussion
Meta-analysis of datasets derived from studies that included mucosal gene expression analysis in patients with 
UC resulted in the identification of a UC gene expression disease signature consisting of 946 up- and 543 down-
regulated DEG. This signature was derived from multiple studies that included patients with active endoscopic 
disease, and may be useful as a single reference that is generally applicable to a more diverse population of 
patients with UC and active inflammation than any single dataset. Eight publicly accessible microarray datasets 
were included to identify the most robustly regulated genes and Reactome pathways in patients with UC com-
pared to non-IBD controls. Combining multiple datasets increased the overall sample size (16.7 and 7.8 times 
the median UC and non-IBD control sample sizes) and facilitated the identification of significantly up- or down-
regulated DEG in meta-analysis despite minimal change in gene expression in some of the individual datasets. 
Furthermore, the risk of type-1 error associated with the identification of a gene in 1 dataset but not in others 
was reduced by combining different datasets. We anticipate that this approach will be of considerable value for 
future evaluation of gene expression levels across these datasets by other investigators. A web-based data-mining 
tool has been created to facilitate such research (https://​preme​dibd.​com/​genes.​html).

Several interesting findings were observed in this study. Our meta-analysis DEG included 15 that overlap with 
previously described IBD susceptibility genes and 16 eQTL genes (Table 3). Additionally, the 10 top-ranked most 
up-regulated genes included LCN2, which encodes an inflammation-induced anti-bacterial protein produced by 
neutrophils21, as well as DUOX2 and DUOXA2. DUOX2 is associated with very early onset IBD22 and the genes 
encode the reactive oxygen species (ROS)-generating enzyme dual oxidase and dual oxidase accessory proteins, 
respectively, which have also been previously reported to be overexpressed in UC23. The 10 top-ranked most 
down-regulated genes included AQP8, a gene encoding a small integral membrane protein that regulates water 
absorption in the absorptive cells of the duodenum, jejunum, and colon24 whose expression is reported to be 
decreased in patients with UC compared to controls14,25,26, and CLDN8, a gene encoding a tight junction protein 
previously shown to be down-regulated in both UC and CD27.

This study identified common gene and pathway-level similarities despite large variation in the number of 
DEG and relative magnitude of gene log2-FC between the individual datasets. Surprisingly, no relationship 
was found between samples size and the number of DEG, suggesting that other factors contribute to the power 

Table 2.   Top 10 up- and down-regulated genes in meta-analysis. Genes were ranked using the TopConfects 
approach. The adjusted P value was determined using the Benjamini Hochberg method.

Symbol Log2-FC (95% CI) P value Adjusted P value

Up regulated

LCN2 3.31 (2.21, 4.41) 4.07E–09 1.80E–07

DUOXA2 3.31 (2.17, 4.45) 1.40E–08 5.16E–07

PI3 2.93 (1.93, 3.94) 1.08E–08 4.14E–07

CXCL8 2.84 (1.88, 3.8) 6.87E–09 2.79E–07

MMP3 3.73 (2.24, 5.22) 8.63E–07 1.60E–05

REG3A 4.21 (2.41, 6.01) 4.45E–06 6.07E–05

CHI3L1 3.6 (2.11, 5.08) 2.02E–06 3.21E–05

MMP7 2.23 (1.46, 3.01) 1.52E–08 5.54E–07

DUOX2 3.65 (2.12, 5.18) 2.91E–06 4.32E–05

MMP9 1.86 (1.27, 2.46) 8.78E–10 4.86E–08

Down regulated

AQP8  − 4.27 (− 5.78, − 2.76) 3.02E–08 9.92E–07

CLDN8  − 3.23 (− 4.28, − 2.18) 1.77E–09 8.77E–08

HMGCS2  − 3.01 (− 4.06, − 1.97) 1.42E–08 5.21E–07

UGT2A3  − 2.39 (− 3.16, − 1.61) 1.30E–09 6.68E–08

GUCA2B  − 2.43 (− 3.23, − 1.63) 2.62E–09 1.23E–07

PCK1  − 2.86 (− 3.89, − 1.83) 5.69E–08 1.70E–06

TRPM6  − 2.11 (− 2.8, − 1.43) 1.29E–09 6.63E–08

CHP2  − 2.24 (− 3.03, − 1.44) 3.48E–08 1.11E–06

ANPEP  − 1.53 (− 1.98, − 1.07) 6.06E–11 4.81E–09

ADH1C  − 2.1 (− 2.87, − 1.33) 9.00E–08 2.52E–06

https://premedibd.com/genes.html
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to detect DEG in these datasets. (Supplementary Fig. S12). Lower rates of gene log2-FC were observed for the 
GSE53306 dataset (Fig. 2), which also had low enrichment values for ECM-related pathways (Supplementary 
Fig. S11) compared to the other datasets. This dataset was derived from RNA isolated from FFPE, while the 
remaining datasets were derived from RNA isolated from whole biopsy samples. The data on FFPE-derived RNA 
is conflicting, with some investigators reporting lower quality relative to whole biopsy material with subsequent 
limitations to downstream analysis28,29, whereas other groups have reported satisfactory results. Additional 

Figure 2.   Forest plots of the mean log2 fold changes for the top 2 up-regulated genes identified in meta-
analysis, LCN2 (panel a) and DUOXA2 (panel b). Data are shown for mean log2 fold changes for each gene in 
both the individual datasets and for the meta-analysis. The mean log2 fold change for each gene in the meta-
analysis is represented by the vertical red dashed line, whereas the mean log2 fold change for the genes in each 
dataset is represented by grey dots. Whiskers for each mean value correspond to the 95% confidence interval. 
(b) Forest plots of the mean log2 fold changes for the top 2 down-regulated genes identified in meta-analysis, 
AQP8 (panel c) and CLDN8 (panel d). Data are shown for mean log2 fold changes for each gene in both the 
individual datasets and for the meta-analysis. The mean log2 fold change for each gene in the meta-analysis is 
represented by the vertical red dashed line, whereas the mean log2 fold change for the genes in each dataset is 
represented by grey dots. Whiskers for each mean value correspond to the 95% confidence interval.
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studies are required to determine the impact of starting material (e.g., FFPE vs. frozen biopsy-derived RNA) on 
gene expression analyses.

We observed some unexpected findings within this meta-analysis which warrant discussion. For example, 
the pathway ‘SLC-mediated transmembrane transport’ was enriched in the down-regulated DEG identified in 
meta-analysis, despite only being enriched in the down-regulated DEG of 3 individual datasets. This observation 
provides support for the power of meta-analysis to identify enriched pathways that cannot be identified in most 
of the individual datasets. Conversely, neither ’Citric acid cycle (TCA cycle)’ nor ‘The citric acid (TCA) cycle and 
respiratory electron transport’ pathways were enriched in the down-regulated DEG identified in meta-analysis 
despite enrichment of these pathways in the down-regulated DEG identified in 4 of the individual datasets, 
suggesting that meta-analysis at the gene level does not merely provide the same information as the strongest 
enrichment scores for the individual dataset DEG.

The study had some important limitations. Specifically, there were large inconsistencies in the methods and 
data reporting conventions in the original studies. Furthermore, the studies did not consistently report patient-
level data that are crucial to enable the full power of meta-analysis in IBD. Only 1 of 8 datasets included even basic 
characteristics (age and sex). Common definitions and nomenclature, akin to those used within clinical trials, 
would help facilitate dataset compilation and harmonization, including information on patient- and disease-
related factors such as demographics, sample source and processing methods (intestinal segment, preservation, 
isolation of RNA), disease duration and extent, concomitant medications, and measures of disease activity 
(clinical, endoscopic, and histological). Standardized reporting of this information would facilitate an analysis 
of the effect of clinical and demographic covariates, the comparison of disease subsets across cohorts by meta-
analysis, and improve the potential for patient-targeted therapy. Additionally, while different normalization or 
correction approaches have been proposed30, for this analysis, datasets were normalized by using a ‘late-stage’ 
integration31, whereby test statistics were derived for individual datasets before merging using a random effects 
model. We believe this sufficiently reduced potential batch effects without removing inherent heterogeneity in 
patient groups or study design, which is a concern when applying any normalization method32. Finally, the use 

Table 3.   Meta-analysis DEG previously identified as IBD susceptibility genes (either by GWAS or eQTL). Trait 
refers to the phenotype associated with single nucleotide polymorphism.

Gene Meta-DEG log2-FC Meta-DEG adj. P. val Trait Type

CXCL5 2.06 3.49E–03 UC eQTL

NFKBIZ 1.13 9.68E–08 UC GWAS

PTPRC 0.96 3.38E–03 IBD GWAS

MUC1 0.93 2.41E–05 UC eQTL

SLAMF8 0.87 8.49E–04 CD GWAS

OSMR 0.85 2.88E–02 IBD GWAS

PLCG2 0.82 1.25E–05 IBD GWAS

CCR2 0.81 1.56E–02 CD eQTL

NCF4 0.79 1.28E–04 CD GWAS

GPR65 0.75 4.02E–04 IBD eQTL

HLA-DQA1 0.75 1.44E–02 UC eQTL

RSPO3 0.74 3.03E–04 CD GWAS

RASGRP1 0.72 1.92E–04 IBD GWAS

RASGRP1 0.72 1.92E–04 CD eQTL

PRKCB 0.72 8.67E–06 IBD GWAS

PRKCB 0.72 8.67E–06 UC eQTL

MAP3K8 0.71 1.94E–16 IBD GWAS

STAT4 0.65 1.42E–03 IBD GWAS

ITGAL 0.65 1.54E–04 UC eQTL

ITGAL 0.65 1.54E–04 UC GWAS

STAT3 0.63 3.79E–06 CD eQTL

IL18R1 0.61 2.79E–05 IBD eQTL

CPEB4 0.61 1.47E–03 CD eQTL

CPEB4 0.61 1.47E–03 IBD GWAS

NR5A2  − 0.66 5.91E–10 IBD GWAS

NXPE1  − 0.67 6.05E–04 UC eQTL

SLC22A4  − 0.71 1.98E–04 IBD eQTL

PGAP3  − 0.73 1.91E–05 IBD eQTL

SLC22A23  − 0.79 5.84E–07 IBD GWAS

NXPE4  − 1.27 2.31E–04 UC eQTL

SLC22A5  − 1.43 2.17E–05 IBD eQTL
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Figure 3.   Enrichment of Immune-related Reactome pathways in individual datasets and meta-analysis 
(Meta- × 8) up-regulated genes. The − log10 of the adjusted P value is shown on the Y-axis with higher bars 
representing lower adjusted P values.

Figure 4.   Enrichment of transport and modification-related Reactome pathways in individual dataset and 
meta-analysis (Meta- × 8) down-regulated genes. The − log10 of the adjusted P value is shown on the Y-axis with 
higher bars representing lower adjusted P values.
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of biopsy material, which is heterogenous with regard to cell type, inherently limits the detection of DEG in 
specific populations of cells. However, analysis and discovery of cell-type specific changes in gene expression in 
samples from patients with IBD is possible with the application of single cell technology33.

Selection of datasets was limited to those that were available as microarrays at GEO. Although this approach 
excluded the increasing number of available RNA-seq datasets as well as datasets available at other repositories, 
such as ArrayExpress, it reduced analytical variability. Furthermore, although these methods resulted in a more 
robust signature, we did not include studies that enrolled pediatric patients, such as PROTECT34, which has 
provided valuable insights into gene signatures for disease severity and response. The study methods, however, 
will nevertheless have significant value and provide improved statistical power for analysis of patient subtypes, 
small disease cohorts, or for identification of signatures associated with treatment response (e.g., responders and 
non-responders) where small sample size may require the combination of multiple datasets.

Other approaches have been used to combine gene expression datasets from patients with IBD. Zhu et al. 
performed Robust Rank Aggregation on gene lists from 14 publicly available datasets with 100 up-regulated 
and 50 down-regulated genes and identified 7 enrichment modules that are similar to the pathways identified in 
this study11. Other investigators have used meta- analysis to study gene expression in blood or peripheral blood 
mononuclear cells9,10, or to compare CD and UC8, or response to therapy35. The current study advances the field 
with the analysis of a non-redundant set of samples (those represented in multiple datasets were excluded) and 
methods that both visualize the contribution of individual datasets to the meta-analysis, and facilitate direct 
comparison of the confidence intervals for log2-FC between datasets. Finally, these data provide a useful refer-
ence to evaluate the expression of potential biomarkers or therapeutic targets, pharmacodynamic markers, or 
molecular surrogates of UC disease activity, and will serve as an important resource to summarize the critical 
information available in the ever increasing number of publicly available gene expression datasets for UC.

Data availability
The datasets generated during and/or analysed during the current study are available in the Gene Expression 
Omnibus repository, https://​www.​ncbi.​nlm.​nih.​gov/​geo/.
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